2018-01-06

Hatiras - Cosmology (Original Mix) [Spacedisco Records]



you know, all scientific ideas, no matter how accepted or widespread they are, are susceptible to being overturned. For all the successes any idea may have, it only takes one experiment or observation to falsify it, invalidate it, or necessitate that it be revised. Beyond that, every scientific idea or model has a limitation to its range of validity, from the everyday problems to, "cosmology", even Newtonian mechanics break down, close to the speed of light; General Relativity breaks down at singularities; evolution breaks down when you reach the origin of life. Even the Big Bang has its limitations, as there's only so far back we can extrapolate the hot, dense, expanding state that gave rise to what we see today, (unless you go with my theory that the universe goes from expansion, (full inhale state), to full exhaled, (contracted state), over and over in a loop, the universe has a finite end, but time still flows while the universe is collapsing), There are three things going on here: the problems with the Big Bang that led to the development of cosmic inflation, the solution(s) that cosmic inflation provides and generic behavior, and subsequent developments, consequences, and difficulties with the idea. Is that enough to cast doubt on the entire enterprise? Let's lay it all out for you to see., Ever since we first recognized that there are galaxies beyond our own Milky Way, all the indications have shown us that our Universe is expanding. Because the wavelength of light is what determines its energy and temperature, then the fabric of expanding space stretches those wavelengths to be longer, causing the Universe to cool. If the Universe is expanding and cooling as we head into the future, then that means it was closer together, denser, and hotter in the past. As we extrapolate farther and farther back, the hot, dense, uniform Universe tells us a story about its past. (the singularity), If that were the way things worked, there would be a number of puzzles based on the observations we had. Why would the Universe be the same temperature everywhere? The different regions of space from different directions wouldn't have had time to exchange information and thermalize; there's no reason for them to be the same temperature. Yet the Universe, everywhere we looked, had the same background 2.73 K temperature. Why would the Universe be perfectly spatially flat? The expansion rate and the energy density are two completely independent quantities, yet they must be equal to one part in 1024 in order to produce the flat Universe we have today. Why are there no leftover high-energy relics, as practically every high-energy theory predicts? There are no magnetic monopoles, no heavy, right-handed neutrinos, no relics from grand unification, etc. Why not? In 1979, Alan Guth had the idea that an early phase of exponential expansion preceding the hot Big Bang could solve all of these problems, and would make additional predictions about the Universe that we could go and look for. This was the big idea of cosmic inflation. This type of expansion, exponential expansion, is different from what happened for the majority of the Universe's history. When your Universe is full of matter and radiation, the energy density drops as the Universe expands. As the volume expands, the density goes down, and so the expansion rate goes down, too. But during inflation, the Universe is filled with energy inherent to space itself, so as the Universe expands, it simply creates more space, and that keeps the density the same, and prevents the expansion rate from dropping. This, all at once, solves the three puzzles as follows:The Universe is the same temperature everywhere today because disparate, distant regions were once connected in the distant past, before the exponential expansion drove them apart. The Universe is flat because inflation stretched it to be indistinguishable from flat, (spaghetti-fication of the universe as it is stretched by the singularity), the part of the Universe that's observable to us is so small relative to how much inflation stretched it that it's unlikely to be any other way. And the reason there are no high-energy relics is because inflation pushed them away via the exponential expansion, and then when inflation ended and the Universe got hot again, it never achieved the ultra-high temperatures necessary to create them again. By the early 1980s, not only did inflation solve those puzzles, but we also began coming up with models that successfully recovered a Universe that was isotropic (the same in all directions) and homogeneous (the same in all location), consistent with all our observations.So inflation has a tremendous number of successes to its name. But since the late 1980s, theorists have spent a lot of time cooking up a variety of inflationary models. They've found some incredibly odd, non-generic behavior in some of them, including exceptions that break some of the predictive rules, above. In general, the simplest inflationary models are based on a potential: you draw a line with a trough or well at the bottom, the inflationary field starts off at some point away from that bottom, and it slowly rolls down towards the bottom, resulting in inflation until it settles at its minimum. Quantum effects play a role in the field, but eventually, inflation ends, converting that field energy into matter and radiation, resulting in the Big Bang, But you can make multi-field models, fast-roll models instead of slow-roll models, contrived models that have large departures from flatness, and so on. In other words, if you can make the models as complex as you want, you can find one that gives departures from the generic behavior described above, sometimes even resulting in departures from one or more of these six predictions. This is what the current controversy is all about! One side goes so far as to claim that because you can contrive models that can give you almost arbitrary behavior, inflation fails to rise to the standard of a scientific theory. The other side claims that inflation makes these generic, successful predictions, and that the better we measure these parameters of the Universe, the more we constrain which models are viable, and the closer we come to understanding which one(s) best describe our physical reality., (it is not real, we are not here), The facts that no one disputes are that without inflation, or something else that's very much like inflation (stretching the Universe flat, preventing it from reaching high energies, creating the density fluctuations we see today, causing the Universe to begin at the same temperatures everywhere, etc.), there's no explanation for the initial conditions the Universe starts off with. Alternatives to inflation have that hurdle to overcome, and right now there is no alternative that has displayed the same predictive power that the inflationary paradigm brings. That doesn't mean that inflation is necessarily right, but there sure is a lot of good evidence for it, and many of the "possible" models that can be concocted have already been ruled out. Until an alternative model can achieve all of inflation's successes, cosmic inflation will remain the leading idea for where our hot Big Bang came from, until my theory is proven and backed up by precise predictions that can be verified as, standardz, hahahahaha, :) #edio

No comments: